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Abstract

This paper presents a novel computational model of jazz im-
provisation based on n-gram language models. Recent func-
tional neuroimaging studies suggest that the brain processes
structural elements of improvised music and conversational
language in a similar manner. We hypothesized that if musi-
cal improvisation and language share a common cognitive and
neurological foundation, then statistical techniques for mod-
eling one domain should be capable of successfully modeling
the other domain. Accordingly, we demonstrate that n-grams
(an archetypal language model) can successfully model jazz
improvisation when trained on a large corpus of expert-level
jazz saxophone solos. Furthermore, we propose perplexity as
a novel method of evaluation of jazz improvisation models.
Keywords: computational models; jazz improvisation; music;
language; n-grams

Introduction

Which cognitive faculty does the following list of attributes
describe? (1) It is a form of communication; (2) It is gov-
erned by rules; (3) It is acquired through experience; and (4)
It requires the production of finite strings from infinite pos-
sibilities. This is a paradigmatic description of human lan-
guage, and these attributes are among the characteristics that
make language a salient subject for studying the mind. How-
ever, these attributes also aptly characterize jazz improvisa-
tion (Culicover, 2005).

This paper presents a novel computational model of
jazz improvisation using techniques developed for language
modeling–specifically, n-grams (Figure 1). The success of
the present model, paired with the success of n-gram lan-
guage models, suggests that the same types of computational
architectures can provide basic accounts of production of both
improvised music and language. This success provides com-
putational support for the hypothesis that production of mu-
sical improvisation relies on the same areas of the brain as
language production. This hypothesis, in its strongest form,
states that these regions are not domain-specific for language,
but domain-general for communication (Donnay et al., 2014).

The hypothesis of a shared neurological foundation be-
tween improvised music and language derives from previous
functional imaging studies of improvising musicians. Limb
and Braun (2008) suggest that the medial prefrontal cortex
is recruited to produce narrative structure in both musical im-
provisation and linguistic improvisation (e.g., conversation or
storytelling). Similarly, Berkowitz and Ansari (2008) suggest
that the inferior frontal gyrus is recruited to produce syntac-
tic structure in both musical improvisation and linguistic im-

provisation. Other functional imaging studies of musical im-
provisation include Liu et al. (2012); Brown, Martinez, and
Parsons (2006); and Bengtsson, Csikszentmihalyi, and Ullen
(2007). These studies are summarized in Beaty (2015).

The hypothesis of shared cognitive traits between impro-
vised music and language is supported largely by qualitative
observation. Johnson-Laird (2002) claims that the best anal-
ogy to jazz improvisation is conversation (see also, Johnson-
Laird, 1991). Likewise, Culicover (2005) provides a list of
similar characteristics between jazz improvisation and con-
versational language, both of which are: improvised, rule-
governed, processed in real-time, creative, acquired through
experience, and used for communication. These descriptions
are both aligned with the phenomenological accounts of many
professional musicians who liken their collaborative improvi-
sation to language or conversation (Berliner, 2009).

Sampled rhythmic sequence

Melodic sequence

Sampled pitch sequence

Pitch n-gramRhythm n-gram

Corpus of jazz solos

Figure 1: Basic structure of the present model. Melodic se-
quences are produced by independently sampling rhythms
and pitches from respective n-grams. The n-gram probabili-
ties are learned from a corpus of expert jazz saxophone solos;
these probabilities reflect the likelihood of note n given the
previous n�1 notes.

Many researchers have previously attempted to model pro-
duction of jazz improvisation, because jazz improvisation of-
fers a paradigmatic example of musical improvisation, which
is a fascinating cognitive expertise independently of its rela-
tion to language. Examples of techniques used in these mod-
els include genetic algorithms (Biles, 1994), artificial neural
networks (Toiviainen, 1995; Bickerman et al., 2010), gram-
mars (Keller & Morrison, 2007), and tailor-made sets of im-
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provisatory formulae (Grachten, 2001). A common advan-
tage among these systems is that they produce novel strings
of melodies that qualitatively resemble jazz. A significant dis-
advantage of these systems is that none are accompanied by a
metric for quantifying the success of the produced melodies.
Furthermore, many of these models rely on highly domain-
specific algorithms, and it is unclear how they might general-
ize to language or other domains of creativity.

In contrast, the field of modeling human language is far
more developed than the field of modeling jazz improvisa-
tion. For example, some language models have been shown to
achieve human-level performance on tests of analogies (Dem-
ski et al., 2015). The archetypal technique for language mod-
eling is characterized by learning an n-gram model from a
large corpus of data (Manning, 1999). Intuitively, n-grams
capture the statistical likelihood that, in English, if one says
“My name” they are likely to follow it with “is” and not “are”.
In other domains, n-grams are referred to as Markov models
or finite-state models.

The application of n-grams to music dates back to Pinker-
ton (1956) and Cohen (1962). A more recent example of us-
ing Markov models to predict music is Conklin (2003). The
present model is differentiated from previous statistical mod-
els of musical generation namely by (1) its novel corpus of
data, without which a model cannot be trained or tested, and
(2) its explicit relationship to cognitive and neurological hy-
potheses.

Thus, with the qualitative and quantitative similarities be-
tween improvised music and language, the demonstrated suc-
cess of n-gram language models, and the comparatively large
potential for improvement in jazz improvisation models, it
follows naturally to apply modeling techniques developed for
language to jazz improvisation.

N-gram Background

The following procedures were used to learn the present n-
gram model. These techniques can apply to learning proba-
bilities of strings in the context of both language and music.
In language modeling, the goal of an n-gram is to calculate
the probability of a given sentence. In musical modeling, the
goal of an n-gram is to calculate the probability of a given
melodic phrase:

P(W ) = P(w1,w2, ...,wn) (1)

Where W is a sentence or, in the case a music, a melodic
phrase and w1, ...,wn is the string of words making up the
sentence or the string of notes making up the phrase.

This calculation is often framed in the following way; the
probability of word n given the previous n�1 words:

P(wn|w1,w2, ...,wn�1) (2)

For instance, a language model may capture that “are” is
likely to follow from “My children” in English. Similarly, a
musical model may capture that G is likely to follow from E
in the key of C.

Ideally, a model would be sophisticated enough to learn the
specific probabilities associated with complex strings. How-
ever, this is not feasible in practice. To account for this, n-
gram models typically make the Markov assumption:

P(wn|w1,w2, ...,wn�1)⇡ P(wn|wn�1) (3)

The base rate probability P(wn) is called a unigram.
P(wn|wn�1) is called a bigram. P(wn|wn�2,wn�1) is called
a trigram. In the present model, these n-gram probabilities
were learned using data from a training set with 385,305 note
events.

As n increases, the percentage of possible strings that have
not been observed increases as well. According to the model,
the probabilities of these unseen strings are 0, even if many
of them could be legal. To account for these unseen possible
strings, we used a method of smoothing called simple linear
interpolation. The simple linear interpolation equation for tri-
grams:

P̂(wn|wn�1,wn�2) = l1P(wn|wn�1,wn�2)

+l2P(wn|wn�1)

+l3P(wn)

(4)

Where li is a weight for the associated n-gram and Snli =
1. These weights are learned by maximizing the likelihood of
strings in a held-out set, which, for the present model, con-
tained 22,665 note events. This interpolated model affords
appropriate probability mass to strings which have not yet
been seen, but could be in the future.

Perplexity is a metric for evaluating the performance of n-
gram models. It is proportional to the probability that the
learned n-gram assigns to each string W seen in a test set. The
test set for the present model contained 45,300 note events.
The perplexity equation for bigrams:

PP(W ) = N

s
N

’
i=1

1
P(wi|wi�1)

(5)

Where W is a string of words and N is the number of words
in string W . For more information on n-grams or language
modeling, see Manning (1999).

Language models typically learn and evaluate n-gram
probabilities with a large corpus of sentence data. The present
jazz improvisation model employs the same methodology by
training and testing on a large corpus of appropriate musical
phrases.

Data Acquisition Methods

Learning n-gram probabilities for jazz improvisation requires
a substantial corpus of data from solos played by expert jazz
musicians. To create a corpus of such data, we followed a
three step process: (1) download publicly available transcrip-
tions of jazz saxophone solos as portable document format
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Figure 2: Process of data acquisition from original solo to
note matrix. Individual transcriptions of professional sax-
ophone solos were downloaded from an internet database.
Conversion from PDF to MIDI to note matrix was done using
third-party software.

(PDF) files, (2) transform these PDF files into musical instru-
ment digital interface (MIDI) files, and (3) transform these
MIDI files into note matrices for use in MATLAB (Figure 2).

First, we downloaded publicly available transcriptions of
jazz saxophone solos as PDF files. Many online resources
exist to amass collections of solos, because many neophyte
jazz musicians learn their instrument through attempting to
play expert solos verbatim, a practice technique referred to as
transcription. We used 838 transcribed saxophone solos from
the Saxopedia website, which is a wiki-based collection of
transcribed jazz solos. These solos represent a comprehen-
sive sample of the most influential jazz saxophonists from the
1940s to 2000s – over 150 musicians, including Stan Getz,
Michael Brecker, Dexter Gordon, and Sonny Rollins. These
data represent canonical jazz saxophone style and should gen-
eralize to other jazz instruments in as much as they are not
bound by instrument-specific limitations.

Saxophone solos were chosen as data because (1) the sax-
ophone plays only monophonic melodies, (2) notated tran-
scriptions are most prevalent for saxophone, and (3) writ-
ten musical notation can more accurately represent the music
played by a saxophone than that of a trumpet or trombone.

Second, we used Myriad Software's PDFtoMusic program
to transform PDF files into MIDI files. Due to individual
discrepancies in notating by the original transcribers and oc-
casional flaws in the transformation process, this transfor-
mation introduced intermittent and apparently unsystematic
noise into the data, namely as approximations of rhythms
(e.g., encoding 0.5 as 0.50001).

Third, we used the MIDI toolbox for MATLAB (Eerola
& Toiviainen, 2004) to transform MIDI files into note matri-
ces. MIDI files, unlike waveform-based files, explicitly repre-
sent individual characteristics of note events such as duration,
pitch, and velocity. We were therefore able to represent dis-
tinct attributes (such as pitch and rhythmic duration) as vec-

tors, indexed corresponding to the order in which the notes
occurred.

In total, this resulted in 453,409 note events (including start
and stop indicators), for which we were especially interested
in the vectors for rhythmic duration and pitch.

Results

Rhythmic Duration

Rhythmic duration data were stored sequentially in a vector.
Each rhythm is represented as a decimal percentage of a quar-
ter note. For example, an eighth note is represented as 0.5 and
a half note is represented as 2.0. Beginnings and endings of
songs were indicated by start and stop indices.

Discrepancies in the process of transforming PDF files to
note matrices introduced noise into the rhythmic duration
data. We used two strategies to account for this noise: (1)
numeric representations of rhythmic durations were truncated
to four decimal places and (2) rhythmic durations were only
included in the model if they occurred at least once out of
every 4,500 notes (100 times of out the 453,409 notes in the
data set). While some noise may still exist, the effect on the
relevant data should be negligible.

With the rounded decimal and base rate threshold, the
model includes 47 distinct rhythmic tokens. See Table 1 and
Figure 3 for distribution of rhythmic durations.

Table 1: Most common unigram rhythmic durations. Rhyth-
mic durations are displayed as decimal percentage of a quar-
ter note. Forty-seven distinct rhythmic duration tokens were
included in the model.

Base rate Rhythm
57.0% 0.5
18.1% 0.25
5.4% 0.3333
5.9% 1.0
3.4% 0.125
2.3% 0.1667
2.3% 1.5
1.1% 2.0
0.6% 0.6667
0.5% 0.75

Pitch

Pitch data were stored sequentially in a vector. Each pitch
was represented as an integer corresponding to its MIDI rep-
resentation. For example, A0 was represented as 21, A4 was
represented as 69, and A7 was represented as 105. Begin-
nings and endings of songs were indicated by start and stop
indices. Pitches data were learned and evaluated without re-
spect to the underlying harmonic structure.

The model included 67 distinct pitch tokens. See Figure 4
for distribution of pitches.
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Figure 3: Exponential distribution of trigram rhythmic dura-
tions demonstrating well-defined structure of rhythm in jazz
improvisation. Out of the 2,209 possible strings of trigram
rhythmic durations, four of the sequences account for 70.0%
of the rhythmic sequences played. Trigram sequences of pitch
follow a similar exponential distribution.

Model of combined rhythm and pitch

This model combines rhythmic duration and pitch after learn-
ing n-gram probabilities, making the assumption that rhyth-
mic duration and pitch are essentially independent (Figure 1).
The effects of this assumption should be negligible (e.g., an
F is not more likely to be an eighth note by virtue of being
an F and not an F#). However, there may be intermittent
cases where this assumption is incorrect. For example, if one
phrase is commonly played by many musicians with the ex-
act same rhythmic and melodic sequence, then the model will
not capture this correspondence.

The computation performed by the model is simple: Use
learned n-gram probabilities to (1) produce a string of rhyth-
mic durations and (2) populate these rhythmic durations with
pitches. A seed rhythmic duration and pitch are sampled from
respective base rate probabilities.

Perplexity

We propose that models of jazz improvisation can be quanti-
tatively evaluated based on how closely the model-produced
melodies match with melodies produced by expert musi-
cians. The same principle is used to evaluate language mod-
els, where a successful model is one that generates phrases
closely resembling phrases produced by a native speaker. A
basic calculation of the match between model and expert is
perplexity (Equation 5).

In the present model, lowest (i.e., best) evaluated perplex-
ity was 13.29 for pitch and 2.91 for rhythmic duration (Table
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Figure 4: Roughly normal distribution of unigram pitches
demonstrating well-defined structure of pitch in jazz impro-
visation. Spikes between neighbors are likely due to some
keys being more common than others. For example, the most
commonly played pitch, G5, is within the key of Eb, Ab, Bb,
G, and C (the most common jazz keys); however, its neigh-
bor, Ab5, is much less common because it is within the scale
of Eb and Ab, but not Bb, G, or F.

2). In comparison, Brown et al. (1992) learned a trigram lan-
guage model that obtained a perplexity of 244 for a represen-
tative sample of English, containing 44,177 distinct tokens;
Bengio et al. (2006) learned a 5-gram model that obtained
a perplexity of 252 on the same sample. Shannon (1951)
demonstrated a trigram model obtains a perplexity of 9.5 on
predicting English letters (26 distinct tokens).

Discussion

This model provides a strong domain-general basis for mod-
eling jazz improvisation. More domain-specific structure will
be needed to improve the model to the point of human-level
improvisation. Crucially, the model must account for both
harmonic structure (i.e., key and chord changes) and rhyth-
mic structure (i.e., tempo and rhythmic style).

Harmonic structure is a crucial aspect of jazz improvisa-
tion. While a melody can still incorporate pitches that are not
within the key being played, the likelihood of a given pitch
depends significantly on the chords played by the accompani-
ment. An account of harmonic structure will require domain-
specific knowledge about chords to incorporate statistical de-
pendencies between pitch and harmony into the model. For
example, the n-gram will need to account for the chord over
which the current string of notes is being played. In practice,
this should be feasible to incorporate into future models, but
will require a transition from resolute domain-generality to



Table 2: Perplexity evaluation results. Ability to predict ex-
pert melodic phrases increases with n, with the most dramatic
increase between unigram and bigram.

Attribute N-gram Set Perplexity
pitch 1 test 31.88
pitch 1 train 34.15
pitch 2 test 14.61
pitch 2 train 13.38
pitch 3 test 13.92
pitch 3 train 12.18
pitch 4 test 13.29

pitch 4 train 10.49
rhythm 1 test 7.25
rhythm 1 train 8.34
rhythm 2 test 2.96
rhythm 2 train 2.86
rhythm 3 test 2.91

rhythm 3 train 2.78

incorporation of domain-specific knowledge.

It should be noted that though the model does not incorpo-
rate knowledge about harmony, it is still able to account for
a significant amount of pitch structure in melodies. Just by
incorporating a dependency on the previous pitch, the model
can implicitly infer harmonic information. A model that in-
corporates knowledge about harmony will be able to account
for even more melodic structure in jazz improvisation (i.e.,
result in a lower perplexity).

Rhythmic structure is another crucial aspect of jazz impro-
visation. Not only do musicians need to be playing at the
same tempo, they also must agree on a rhythmic style. For
instance, if a song is played with swung eighth notes, it will
induce a different rhythmic paradigm than if a song is played
with straight eighth notes. Musicians refer to this differen-
tiation as rhythmic “feel”. Incorporating rhythmic feel into
the model will require an independent computational model
of the way in which rhythms are played by jazz musicians.

A considerable issue in all existing models of jazz impro-
visation, including the present one, is the lack an account
for the global scope of a solo, called compositional inten-
tionality. Compositional intentionality captures the resem-
blance of a solo to a narrative story, which has specific char-
acteristics of exposition, rising action, and resolution. Cur-
rent models produce melodies without respect to placement
in the greater context a solo. Future models should incorpo-
rate context-dependent facets such as idiomatic repetition of
melodic phrases and melody complexity as a function of solo
context (e.g., simpler phrases initially, increasing in complex-
ity as solo progresses).

An idealized model, accounting for harmonic, rhythmic,
and global structure, is outlined in Figure 5.

Sampled rhythmic sequence

Melodic sequence

Sampled pitch sequence

Relevant pitch n-gramRelevant rhythm n-gram

Rhythmic structure Harmonic structure

Global structure

Figure 5: Basic structure of an idealized model. Global struc-
ture of the current solo informs local considerations of rhyth-
mic structure and harmonic structure. In turn, these consid-
erations allow for sampling respective rhythmic and pitch se-
quences from the appropriate n-grams to create a melodic se-
quence. A model with these contingencies would approxi-
mate a comprehensive account of jazz improvisation.

Future Methods of Evaluation

Future methods of evaluation will require comparing compe-
tency of predicting expert-level jazz improvisation between
models. This is analogous to how language models are evalu-
ated. The better model is the one that performs more com-
petently on a given task. The difficulty in this method of
evaluation for jazz modeling will be aligning each model in a
common computational paradigm.

Another future method of evaluation could take the form
of an adapted Turing Test (Turing, 1950): Given all non-
improvisational variables equal, can a human judge distin-
guish between music from a model of jazz improvisation and
music from an expert musician? If musical samples from
models and humans were compared with equivalent timbre,
rhythmic density, and melodic range, then only the variable of
idiomatic improvisation would remain. Of course, this could
be considered the ultimate goal of jazz modeling; no existing
model would likely pass this test. However, an adapted Tur-
ing Test would be a sound method of evaluation in principle.

Domain-general Implications

While understanding jazz improvisation may be a worthwhile
goal in itself, the further reaching considerations are that of
domain-general communication and creativity.

Communication Just as the present techniques for model-
ing jazz improvisation are inspired by techniques for model-
ing language, perhaps future advances developed for model-
ing jazz may impact language modeling in return. In many re-
spects, jazz improvisation seems to be a more tractable prob-



lem than language (e.g., smaller lexicon of possible notes
than possible words). Thus, if significant advances are made
in modeling jazz improvisation (a similar, but substantially
easier problem), then these advances may lend translational
insight to language modeling.

Creativity Jazz improvisation is a paradigmatic example
of creative expression under well-defined constraints. Fur-
ther developments in modeling jazz improvisation may yield
understanding about the interaction between expression and
constraint in creativity. Most notably, intriguing implications
could result from the interaction between compositional in-
tentionality (accounting for the global structure of a solo)
and development of novel musical strings: how does an artist
produce creative entities that exist in the context of a whole
work?

Computationally modeling jazz improvisation is perhaps
most salient because it represents a culminating goal of cog-
nitive science and artificial intelligence: Creating something
that is itself creative.
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